Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in <Emphasis Type="Italic">Arabidopsis</Emphasis>
نویسندگان
چکیده
Osmotic stress-induced accumulation of proline, an important protective osmolyte in higher plants, is dependent on the expression of 1-pyrroline-5-carboxylate synthase (P5CS) and proline dehydrogenase (PDH) enzymes that catalyze the rate-limiting steps of proline biosynthesis and degradation, respectively. Proline metabolism is modulated by differential regulation of organ specific expression of PDH and duplicated P5CS genes in Arabidopsis. Stimulation of proline synthesis by abscisic acid (ABA) and salt stress correlates with a striking activation of P5CS1 expression. By contrast, P5CS2 is only weakly induced, whereas PDH is inhibited to different extent by ABA and salt stress in shoots and roots of light-grown plants. Proline accumulation and light-dependent induction of P5CS1 by ABA and salt stress is inhibited in dark-adapted plants. During dark adaptation P5CS2 is also down-regulated, whereas PDH expression is significantly enhanced in shoots. The inhibitory effect of dark adaptation on P5CS1 is mimicked by the steroid hormone brassinolide. However, brassinolide fails to stimulate PDH, and inhibits P5CS2 only in shoots. Proline accumulation and induction of P5CS1 transcription are simultaneously enhanced in the ABA-hypersensitive prl1 and brassinosteroid-deficient det2 mutants, whereas P5CS2 shows enhanced induction by ABA and salt only in the det2 mutant. In comparison, the prl1 mutation reduces the basal level of PDH expression, whereas the det2 mutation enhances the inhibition of PDH by ABA. Regulation of P5CS1 expression thus appears to play a principal role in controlling proline accumulation stimulated by ABA and salt stress in Arabidopsis. Abbreviations: det2, de-etiolated 2; prl1, pleiotropic regulatory locus 1; P5CS, 1-pyrroline-5-carboxylate synthase; PDH, proline dehydrogenase
منابع مشابه
Arabidopsis AMINO ACID PERMEASE1 Contributes to Salt Stress-Induced Proline Uptake from Exogenous Sources
Stress-induced proline accumulation in plants is thought to result primarily from enhanced proline biosynthesis and decreased proline degradation. To identify regulatory components involved in proline transport, we screened for Arabidopsis thaliana T-DNA mutants with enhanced tolerance to toxic levels of exogenous proline (45 mM). We isolated the proline resistant 1-1 (pre1-1) mutant and map-ba...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملThe Arabidopsis E3 SUMO Ligase SIZ1 Regulates Plant Growth and Drought Responses W
Posttranslational modifications of proteins by small ubiquitin-like modifiers (SUMOs) regulate protein degradation and localization, protein–protein interaction, and transcriptional activity. SUMO E3 ligase functions are executed by SIZ1/SIZ2 and Mms21 in yeast, the PIAS family members RanBP2, and Pc2 in human. The Arabidopsis thaliana genome contains only one gene, SIZ1, that is orthologous to...
متن کاملA putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response.
The dumpy (dpy) mutant of tomato (Lycopersicon esculentum Mill.) exhibits short stature, reduced axillary branching, and altered leaf morphology. Application of brassinolide and castasterone rescued the dpy phenotype, as did C-23-hydroxylated, 6-deoxo intermediates of brassinolide biosynthesis. The brassinolide precursors campesterol, campestanol, and 6-deoxocathasterone failed to rescue, sugge...
متن کاملAntagonistic Regulation of Arabidopsis Growth by Brassinosteroids and Abiotic Stresses
To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and...
متن کامل